
Community Yellow Paper: A
Technical Specification for NEO
Blockchain

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang

March 13, 2019

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

The Community Yellow Paper is a community-driven initiative to provide a technical
specification for NEO blockchain. Contributions are accepted via project GitHub page,
so feel free to contribute. Major contributions by community members will allow member
to become a co-author of our Yellow Paper.

Contents

1 Introduction 4

2 Blockchain Networks: consensus protocols, wallets, digital assets and smart contracts 5

3 Numbers on Neo 6

4 Cryptography basics: Digital Signatures and Hash Functions 7
4.1 Current cryptography and NeoQS . 7

5 Neo Assets: Global UTXO vs Account Models vs Tokens 8

6 Interacting with NEO network: transactions, RPC and P2P protocols 9

7 Building Distributed Applications with NeoVM and NeoContract 10

8 Delegated Byzantine Fault Tolerance: Technical details, challenges and perspectives 11
8.1 Background on Practical BFT . 11
8.2 NEO dBFT core modifications . 13
8.3 dBFT detailed description . 13

8.3.1 dBFT states . 13
8.4 Flowchart . 14
8.5 Pseudocode . 16
8.6 Block finality . 16
8.7 Multiple block signature exposure . 16

8.7.1 Detected fault on dBFT v1.0 . 16
8.7.2 Commit phase with change view blocking 17

8.8 Regeneration . 17
8.9 Possible faults . 20

8.9.1 Pure network faults . 20
8.9.2 Mixed malicious byzantine faults . 20

8.10 A MILP Model for Failures and Attacks on a BFT Blockchain Protocol 20
8.10.1 Mathematical model . 20
8.10.2 Example . 24

9 Towards the Smart Economy: the three pillars of NEO 26

10 Using NEO for IoT devices 27

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 2

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

11 Advanced Smart Contracts: Random Numbers, Triggers and Smart Transactions 28
11.1 Advanced Accounts: special locks, funds release cases, Over-The-Counter and special

cryptographic accounts . 28

12 References 29

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 3

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

1 Introduction

The Green Paper is a community-driven initiative to provide a technical specification for Neo
blockchain. It is organized in sections, describing diverse details of the protocol, from consensus
mechanisms, cryptography and smart contracts. Every part of the protocol may be covered here,
although it is recommended to keep the scope as limited as possible to fundamental pieces of the
technology. These topics are suggested by Neo community and may be changed in the future, so
feel free to contribute.

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 4

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

2 Blockchain Networks: consensus protocols, wallets, digital assets
and smart contracts

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 5

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

3 Numbers on Neo

All arithmetic on Neo is performed on little-endian. Integer values are usually represented as 32-byte
big integers, allowing negative values to be represented with twos-complement (starting with top bit
set to one).

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 6

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

4 Cryptography basics: Digital Signatures and Hash Functions

Neo mainly uses SHA-256 and RIPEMD-160 functions for hashing. Digital Signatures are per-
formed via elliptic curves (ECDSA), standard P-256 (secp256r1), which is quite similar to Bitcoin
(secp256k1).

4.1 Current cryptography and NeoQS

NeoQS envisioned a cryptographic system based on Lattice problems. In particular, in the White
Paper, a mechanism based on Shortest Vector Problem (SVP) and Closest Vector Problem (CVP)
were considered.

State-of-the-art studies and reports indicate these classes of problems Regev (2009), with specific
pre-defined conditions, are able generate NP-Hard instances of these problems even in the worst
case. However, some other properties were not accomplished, such as revealing parts of the secret
after signing. Thus, for accomplishing the requirements of a complete cryptographic system, the
mechanism should be able to sign 𝑁 messages without disclosing information about its secret.
Currently, some slightly different variants are being proposed such as Learning with Errors (LWE)
and its compact version known as Ring Learning with Errors (R-LWE).

In this chapter, we describe the basic background of such problems and its perspectives of resolutions
based on the assumption that 𝑃 ! = 𝑁𝑃 .

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 7

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

5 Neo Assets: Global UTXO vs Account Models vs Tokens

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 8

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

6 Interacting with NEO network: transactions, RPC and P2P
protocols

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 9

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

7 Building Distributed Applications with NeoVM and NeoContract

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 10

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

8 Delegated Byzantine Fault Tolerance: Technical details,
challenges and perspectives

This section is part of the Community Yellow Paper1 initiative, a community-driven technical speci-
fication for Neo blockchain.

Various studies in the literature dealt with partially synchronous and fully asynchronous Byzantine
Fault Tolerant systems (Hao et al. 2018; Duan, Reiter, and Zhang 2018; Miller et al. 2016),
but few of them were really applied in a live Smart Contract (SC) Scenario with plenty of distinct
decentralized applications. It is noteworthy that append storage applications poses different level of
challenges compared to the current need of SC transactions persisting, which involve State Machine
Replication (Schneider 1990). In addition, a second important fact to be considered is related to
the finality in appending information to the ledger. Final users, merchants and exchanges want to
precisely know if their transaction was definitively processed or still could be reverted. Differently
than most part of previous works in the literature, NEO blockchain proposed a Consensus mechanism
with one block finality in the first layer (Hongfei, Da and Zhang, Erik 2015). Besides its notorious
advantages for real case applications, this characteristic imposes some constraints, also additional
vulnerabilities and challenges.

This technical material posses the main goal of highlighting the main adaptions from the classical
Practical Byzantine Fault Tolerance (pBFT) to the Delegated Byzantine Fault Tolerance (dBFT)
currently used in the NEO blockchain core library (see Neo Project Github). Furthermore, it describes
a novel mathematical model able to verify specific consensus behavior by means of a discrete model
which can simulate real cases operation. While highlighting the positive aspects of the current NEO
consensus system, this document also has the goal of pointing out possible faults and future research
& development directions. The latter can be achieved by a combination of NEO’s requirement and
novel ideas in connection with well-known studies from the literature.

The remainder of this document is organized as follows. Section 8.1 provides a brief background
on the the classical PBFT. Section 8.2 describes the key modification made from the literature for
the achievement of NEO’s dBFT. Section 8.3 details the current state-of-the-art of the NEO dBFT
ongoing discussions, presenting didactic pseudocodes and flowcharts. Finally, Section 8.10 proposes
a novel mathematical programming model based on Linear Integer Programming, that models an
optimal adversary that will challenge network and verify its limitations on worst case scenarios.

8.1 Background on Practical BFT

Practical BFT was first made possible by the work of Miguel Castro and Barbara Liskov (see Figure 1),
entitled “Practical Byzantine Fault Tolerance” (Castro and Liskov 1999).

1See Community Yellow Paper repository

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 11

https://github.com/neo-project/neo
https://github.com/neoresearch/yellowpaper

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

Figure 1: Turing-Prize winner Barbara Liskov on 2010. Wikipedia CC BY-SA 3.0

Given 𝑛 = 3𝑓 +1 replicas of a State Machine, organized as Primary and Backup nodes, the proposed
algorithm guarantees liveness and safety to the network, if at most 𝑓 nodes are faulty/byzantine2.

• Safety property ensures that all processes will execute as atomic, either executing on all nodes,
or reverting as a whole. This is possible due to the deterministic nature of the process (executed
on every node), which is also valid for NEO network and blockchain protocols on general.

• Liveness guarantees that network won’t be stopped (unless more than 𝑓 byzantine nodes), by
using a mechanism called “change view”, that allows Backup nodes to switch Primary node
when it seems byzantine. A timeout mechanism is used, and by doubling delays exponentially
at every view, PBFT can prevent attacks from malicious network delays that cannot grow
indefinitely. In the current formula, timeout happens following a left-shift operator according
to the current view number, for example:

– Considering 15 second blocks: 15 << 1 is 30s (first change view); 15 << 2 is 60s; 15
<< 3 is 120s; 15 << 4 is 240s.

– Considering 1 second blocks: 1 << 1 is 2s; 1 << 2 is 4s; 1 << 3 is 8s; 1 << 4 is 16s.

The considered network on PBFT assumes that it “may fail to deliver messages, delay them, duplicate
them, or deliver them out of order”. They also considered public-key cryptography to validate identify
of replicas, which is also the same for NEO dBFT. Since algorithm does not rely on synchrony for
safety, it must rely on it for liveness3. The resiliency of 3𝑓 + 1 is optimal for a Byzantine Agreement
(Bracha and Toueg 1985), with at most 𝑓 malicious nodes.

PBFT correctness is guaranteed by having three different phases: pre-prepare, prepare and com-
mit4.

• On pre-prepare, primary sends a sequence number 𝑘 together with message 𝑚 and signed
digest 𝑑. Backup 𝑖 accept pre-prepare if signature is correct, 𝑘 is in valid interval5, and 𝑖 has
not yet accepted a pre-prepare for same 𝑘 and same view.

2The name Byzantine refers to arbitrary behavior, and was coined by Leslie Lamport and others on paper “The
Byzantine Generals Problem”

3This was demonstrated by paper “Impossibility of distributed consensus with one faulty process”
4NEO dBFT 2.0 also consists of three phases, with a slight naming change: prepare request, prepare response, and

commit
5A special technique avoids the exhaustion of sequence number space by faulty primary

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 12

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

• When pre-prepare is accepted, a prepare message is broadcast (including to primary), and
node is considered prepared when it receives at least 2𝑓 prepare messages that match its
local pre-prepare, for the same view. So, at this point, for a given view, the non-faulty replicas
already agree on total order for requests. As soon as 2𝑓 +1 non-faulty are prepared, network
can be considered as committed.

• Every committed replica broadcasts a commit message, and as soon as node 𝑖 has received
2𝑓 + 1 commit messages, node 𝑖 is committed-local. It is guaranteed that, eventually, even
with the occurrence of change views, a system with committed-local nodes with become
committed.

PBFT considers that clients interact and broadcast messages directly to the primary node, then
receiving independent responses from 2𝑓 +1 nodes in order to move forward (to the next operation).
This is a similar situation for NEO blockchain, where information is spread by means of a peer-to-peer
network, but in this case, the location of consensus nodes is unknown (in order to prevent direct
delay attacks and denial of service). One difference is that, for PBFT, clients submit atomic and
independent operations for a unique timestamp, which are processed and published independently.
For NEO blockchain, consensus nodes have to group transactions into batches, called blocks, and
this process may lead to the existence of thousands valid blocks for a same height, due to different
groupings (different combinations of transactions). So, in order to guarantee block finality (a single
and unique block can exist in a given height), we may have to consider situations where the “client”
(block proposer) is also faulty, which is not considered on PBFT.

8.2 NEO dBFT core modifications

In summary, we highlight some differences between PBFT and dBFT:

• One block finality to the end-users and seed nodes;
• Use of cryptographic signatures during different phases of the procedures in order to avoid

exposure of nodes commitment to the current block;
• Ability of proposing blocks based information sharing of block headers (transactions are shared

and storage in an independent syncronization mechanism);
• Avoid double exposure of block signatures by disable change views after commitment phase;
• Regeneration mechanism able to recover failed nodes both in the local hardware and in the

network P2P consensus layer.

8.3 dBFT detailed description

The dBFT consensus mechanism is a state machine, with transitions depending on a round-robin
scheme (to define Primary/Backup nodes) and also depending on network messages.

8.3.1 dBFT states

dBFT states are the following:

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 13

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

• Initial : initial machine state

• Primary : depends on block height and view number

• Backup : true if not primary, false otherwise

• RequestSent : true if block header has been proposed, false otherwise (removed on dBFT 2.0
since code tracks all preparation signatures, merged as RequestSentOrReceived)

• RequestReceived : true if block header has been received, false otherwise (removed on dBFT
2.0 since code tracks all preparation signatures, merged as RequestSentOrReceived)

• SignatureSent : true if signature has been sent, false otherwise (removed on dBFT 2.0 because
of extra commit phase carrying signatures)

• RequestSentOrReceived : true if a valid signature of Primary has been received, false otherwise
(introduced on dBFT 2.0).

• ResponseSent : true if block header confirmation has been sent (introduced on dBFT 2.0:
internal state used only for blocking node to triggering consensus OnTransaction event)

• CommitSent : true if block signature has been sent (this state was only introduced on dBFT
2.0 and replaced SignatureSent)

• BlockSent : true if block has been sent, false otherwise

• ViewChanging : true if view change mechanism has been triggered, false otherwise

• IsRecovering : true if a valid recovery payload was received and is being processed (introduced
on dBFT 2.0: internal state)

The first dBFT handled these states explicitly as flags (ConsensusState enum). However, dBFT 2.0
can infer this information in a implicit manner, since it has added a track of preparations signatures
and state recovery mechanisms.

8.4 Flowchart

Figure 2 presents the State Machine replicated on each consensus node (the term replica or node
or consensus node may be considered synonims on this subsection). The execution flow of a State
Machine replica begins on the Initial state, for a given block height H on the blockchain. Given
T as standard block time (15 seconds); v as current view number (starting from 𝑣 = 0); 𝑒𝑥𝑝(𝑗) is
set to 2𝑗; i as consensus index; R as total number of consensus nodes. This State Machine can be
represented as a Timed Automata (Alur and Dill 1994), where C represents the clock variable and
operations (C condition)? represent timed transitions (C:=0 resets clock). Dashed lines represent
transitions that explicitly depend on a timeout behavior and were included in a different format just
for clarity.

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 14

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

Initial

OnStart
 v := 0
 C := 0

Primary

(H + v) mod R = i

Backup

not (H + v) mod R = i

RequestSentOrReceived

FillContext
 (C >= T)?

C := 0

ViewChanging

(C >= T exp(v+1))?
 C := 0

OnPrepareRequest

(C >= T exp(v+1))?
 C := 0

(C >= T exp(v+1))?
 C := 0

CommitSent

ValidBlock
 EnoughPreparations

EnoughViewChanges
 v := v+1

 C := 0

BlockSent

EnoughCommits

Figure 2: dBFT 2.0 State Machine for specific block height

On Figure 2, consensus node starts on Initial state, on view 𝑣 = 0. Given H and v, a round-
robin procedure detects if current node 𝑖 is Primary: (𝐻 + 𝑣) mod 𝑅 = 𝑖 (it is set to backup
otherwise). If node is Primary, it may proceed to RequestSent after FillContext action (that
selects transactions and creates a new proposed block) after 𝑇 seconds. T is currently, until version
2.0, calculated as a basin on the time that the node received last block instead of checking the
timestamp in which previous header was signed.

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 15

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

8.5 Pseudocode

8.6 Block finality

Block finality in the Consensus layer level imposes the following condition presented on Equation (1),
which defines that there should not exist two different blocks for a given height ℎ, in any time interval
𝑡.

∀ℎ ∈ {0, 1, ⋯ , 𝑡} ⇒ 𝑏𝑖
𝑡 = 𝑏𝑗

𝑡 (1)

In summary, the block finality provides that clients do not need to verify the majority of Consensus
for SMR. In this sense, seed nodes can just append all blocks that posses the number of authentic
signatures defined by the protocol (namely, 𝑀 = 2𝑓 + 1). In this sense, as already described,
for the current NEO dBFT, the minimum number of required signatures is 2𝑓 + 1 as defined in
The Byzantine Generals Problems (Lamport, Shostak, and Pease 1982), where 𝑓 = 1

3 × 𝑁 is the
maximum number of Byzantine nodes allowed by the network protocol.

8.7 Multiple block signature exposure

8.7.1 Detected fault on dBFT v1.0

Known Block Hash stuck fork was recently discovered in real operation of NEO blockchain, 2017.

In particular, this happens due to two components of the Blocks that are selected by each node that
is a primary:

• Different sets of Transactions;
• Block Nonce.

In particular, the NEO dBFT 1.0 had a simplified implementation of the pBFT without the commit
stage.

However, it was detected that under rare situations a given node could receive the desired M signatures
necessary for persisting a Block and, then, suddenly, lose connection with other nodes. In this sense,
the other nodes could detect a lack of communication (along with other fails between themselves)
and generate a new block. Besides breaking block finality 8.6, this problem could stuck the consensus
node and any client that persists the block that was not adopted by the majority of CN. In addition,
in a even more rare situation, 𝑥 nodes with $ f + 1 < x < M $ could receive a given block while
the other nodes had a different block hash, stucking the whole network until a manual decision was
reached.

It is noteworthy that even in an Asynchronous Consensus without timeout mechanism this case could
lead to problems if the Nonce was not yet defined as well as the transactions to be inserted inside
a Block. This real incident motivated several novel insights on the consensus, which covered this
“natural” issue due to network as well as added extra security in case of real byzantine nodes.

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 16

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

8.7.2 Commit phase with change view blocking

Taking into account that the aforementioned faulty could happen even with the commit phase, one
should verify that nodes could stuck but not double expose its signature. On the other hand, other
attacks could happen if malicious nodes tried to save the signature and perform some specific sets
of actions, such as storing information and not sharing it.

In this sense, the possibility that naturally came was:

• Lock view changing (currently implemented since NEO dBFT 2.0) after sending your block
header signature. This means that those who are committed with that block will not sign any
other proposed Block.

On the other hand, a regeneration strategy sound compulsory to be implemented since nodes are
stucked with their agreement. We defined this as the indefatigable miners problem, defined
below:

1. The speaker is a Geological Engineering and is searching for a place to dig for Kryptonite;
2. He proposes a geographic location (coordinates to dig);
3. The majority of the team (𝑀) agrees with the coordinates (with their partial signatures) and

signs a contract to dig;
4. Time for digging: they will now dig until they really find Kryptonite (no other place will be

accepted to be dig until Kryptonite is found). Kryptonite is an infinite divisible crystal, thus,
as soon as one finds he will share the kryptonite so that everyone will have a piece for finishing
their contract (3);

5. If one of them dies, when it resurrects it will see its previous signed agreement (3) and it will
automatically start to dig again (Regeneration strategy). The other minority will suffer the
same, they will be fulfilled with hidden messages saying that they should also dig.

This strategy keeps the strength of the the dBFT with the limit of a maximum number of f faulty
nodes. In addition, it adds robustness with a survival/regeneration strategy.

8.8 Regeneration

The Recover/Regeneration event is designed for responding to a given failed node that lost part
of the history. In addition, it also has a local backup that restore node in some cases of hardware
failure. This local level of safety (which can be seen as a hardware faulty safety) is essential reducing
the change of specific designed malicious attacks.

In this sense, if the node had failed and recovered its healthy it automatically sends a 𝑐ℎ𝑎𝑛𝑔𝑒𝑣𝑖𝑒𝑤
to 0, which means that that node is back and wants to hear the history from the others. Thus, it
might receive a payload that provides it the ability to check agreements of the majority and come
back to real operation, helping them to sign the current block being processed.

Following these requirements, dBFT 2.0 counted with a set of diverse cases in which a node could
recover it previous state, both previously known by the network or by itself. Thus, the recovery is
currently encompassing:

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 17

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

• Replay of 𝐶ℎ𝑎𝑛𝑔𝑒𝑉 𝑖𝑒𝑤 messages;
• Replay of Primary 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡 message;
• Replay of 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 messages;
• Replay of 𝐶𝑜𝑚𝑚𝑖𝑡 messages.

The code can possible recover the following cases:

• Restore nodes to higher views;
• Restore nodes to a view with prepare request sent, but not enough preparations to commit;
• Restore nodes to a view with prepare request sent and enough preparations to commit, conse-

quently, reaching CommitSent state;
• Share commit signatures to a node that is committed (CommitSent flag activated).

Figure 3 summarizes some of the current states led by the recover mechanisms, which is currently
sent by nodes that received change view request. Recover payloads are just sent by a maximum
of 𝑓 nodes that received that 𝐶ℎ𝑎𝑛𝑔𝑒𝑉 𝑖𝑒𝑤 request. Nodes are currently selected based on the
index of payload sender and local current view. It should be noticed that 𝑂𝑛𝑆𝑡𝑎𝑟𝑡 event trigger
a 𝐶ℎ𝑎𝑛𝑔𝑒𝑉 𝑖𝑒𝑤 at view 0 in order to communicate other nodes about its initial activity and the
willing to receive any recover payload. The idea behind this is that a node that is starting lately will
probably find some advanced state already reached by the network.

Here, the internal state 𝐼𝑠𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔, differently than the 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑆𝑒𝑛𝑡 state, is didactically
reproduced for simplifying the possible effects that a Recover message can trigger. In this sense,
without loss of generality, arrows that arrive on it can be directed connected with the ones that leave
it.

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 18

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

Initialize

RecoverLog

OnStart
 Checking data in local db

Recover

v := 0
 C := 0

Initial

InitializeConsensus(0)

CommitSent

store has
EnoughPreparations

IsRecovering

OnRecoveryMessageReceived

Primary

(H + v) mod R = i

Backup

not (H + v) mod R = i

Triggers recover
 every C >= T exp(1))

BlockSent

EnoughCommits

(EnoughViewChanges =>
 C := 0 && v := v + x)

Preparations < M

(EnoughViewChanges =>
 C := 0 && v := v + x)

EnoughPreparations
 Possibly some commits

Preparations < M

ViewChanging

(C >= T exp(v+1))?
 C := 0

RequestSentOrReceived

FillContext
 (C >= T)?

C := 0

(C >= T exp(v+1))?
 C := 0

OnPrepareRequest

Can trigger up to f
recovers messages

EnoughViewChanges
 v := v+1

 C := 0

ValidBlock
 EnoughPreparations

(C >= T exp(v+1) - T)?
 C := 0

Figure 3: dBFT 2.0 State Machine with recover mechanisms

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 19

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

8.9 Possible faults

This section clarifies the possible common problem and malicious attacks that dBFT can expect.

8.9.1 Pure network faults

Possible scenarios:

• Up to f nodes are going to delays messages;
• at maximum, f will crash both in terms of hardware fault or software problems.

8.9.2 Mixed malicious byzantine faults

First of all, Byzantine attacks should be designed in order that nodes will never be able to prove
that it was an attack. Otherwise, NEO holder would recriminate such action and vote in favor of
other nodes. Furthermore, nodes that join a given collaborative network posses an identity or stake.
If anyone could detect such malicious behavior, then, that node would “automatically” (through the
current voting system or an automatic mechanism that could be designed) be removed from the
network.

• at maximum, 𝑓 , nodes will delays messages;
• at maximum, 𝑓 , nodes will send wrong information (unlikely as it could reveal malicious

behavior);
• at maximum, 𝑓 , nodes will try to keep correct information for strategic occasions.

8.10 A MILP Model for Failures and Attacks on a BFT Blockchain Protocol

We present a MILP model for failures and attacks on a BFT blockchain protocol, in particular,
the designed is focused on the specific case of the dBFT, without loss of generality for other less
specialized cases.

This current model is not fully completed due to the recent updates on dBFT to version 2.0. After
being finalized it will include some benchmark result modeled with A Mathematical Programming
Language (AMPL), under development at https://github.com/NeoResearch/milp_bft_failures_att
acks.

8.10.1 Mathematical model

Parameters:

𝑖 ∈ 𝑅 consensus replica 𝑖 from set of replicas 𝑅. 𝑅𝐵𝑌 𝑍 is byzantine set. 𝑅𝑂𝐾 is non-byzantine set.
𝑅 = 𝑅𝑂𝐾 ∪ 𝑅𝐵𝑌 𝑍, such that 𝑅𝑂𝐾 ∩ 𝑅𝐵𝑌 𝑍 = ∅.

𝑓 number of faulty/Byzantine replicas. 𝑓 = |𝑅𝐵𝑌 𝑍|.

𝑁 total number of replicas. 𝑁 = |𝑅| = |𝑅𝑂𝐾| + |𝑅𝐵𝑌 𝑍| = 3𝑓 + 1.

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 20

https://github.com/NeoResearch/milp_bft_failures_attacks
https://github.com/NeoResearch/milp_bft_failures_attacks

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

𝑀 safety level. 𝑀 = 2𝑓 + 1.

𝑏 ∈ 𝐵 block 𝑏 from set of possible proposed blocks 𝐵 (may be understood as block hash). 𝐵 =
{𝑏0, 𝑏1, 𝑏2, ⋯}.

ℎ ∈ 𝐻 height ℎ from set of possible heights 𝐻 (tests may only require two or three heights). 𝐻 =
{ℎ0, ℎ1, ℎ2}. Multiple heights are considered, such that block generation can be simulated
over a bigger horizon (including primary changes).

𝑣 ∈ 𝑉 view 𝑣 from set of possible views 𝑉 (number of views may be limited to the number of
consensus nodes 𝑁). 𝑉 = {𝑣0, 𝑣1, ⋯ , 𝑣𝑁−1}

𝑡 ∈ 𝑇 time unit 𝑡 from set of discrete time units 𝑇 . 𝑇 = {𝑡0, 𝑡1, 𝑡2, ⋯}.

Variables:

𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑖,ℎ,𝑣 binary variable that indicates if Consensus Node 𝑖 is primary at height ℎ view 𝑣.

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑡
𝑖,ℎ,𝑣 binary variable that indicates if replica 𝑖 ∈ 𝑅 is at height ℎ and view 𝑣, on time 𝑡

𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡
𝑖,ℎ,𝑏,𝑣 binary variable that indicates if replica 𝑖 ∈ 𝑅 is sending Prepare Request

message (to all nodes) at height ℎ and view 𝑣, on time 𝑡, for proposed block 𝑏. ACTION
VARIABLE MUST BE SET ONLY ONCE FOR EVERY REPLICA, HEIGHT AND BLOCK. %
Nao entendi esse only once, faltou o View na descricao, nao? Caso o view seja outro ela pode
ser setada denovo

𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡
𝑖,ℎ,𝑏,𝑣 binary variable that indicates if replica 𝑖 ∈ 𝑅 is sending Prepare Response

message (to all nodes) at height ℎ and view 𝑣, on time 𝑡, for proposed block 𝑏. ACTION
VARIABLE MUST BE SET ONLY ONCE FOR EVERY REPLICA, HEIGHT AND BLOCK.

𝑅𝑒𝑐𝑣𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡
𝑖,𝑗,ℎ,𝑏,𝑣 binary variable that indicates if replica 𝑖 ∈ 𝑅 received a Prepare Request

message from replica 𝑗 at height ℎ and view 𝑣, on time 𝑡, for proposed block 𝑏. ACTION
VARIABLE MUST BE SET ONLY ONCE FOR EVERY REPLICA, HEIGHT AND BLOCK.

𝑅𝑒𝑐𝑣𝑃𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡
𝑖,𝑗,ℎ,𝑏,𝑣 binary variable that indicates if replica 𝑖 ∈ 𝑅 received a Prepare Response

message from replica 𝑗 at height ℎ and view 𝑣, on time 𝑡, for proposed block 𝑏. ACTION
VARIABLE MUST BE SET ONLY ONCE FOR EVERY REPLICA, HEIGHT AND BLOCK.

𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑙𝑎𝑦𝑡
𝑖,ℎ,𝑏 binary variable that indicates if replica 𝑖 has relayed block 𝑏 at height ℎ, on time 𝑡.

ACTION VARIABLE MUST BE SET ONLY ONCE FOR EVERY REPLICA, HEIGHT AND
BLOCK.

𝑅𝑒𝑐𝑣𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡
𝑖,𝑗,ℎ,𝑏 binary variable that indicates if replica 𝑖 ∈ 𝑅 received a Block Relay message

from replica 𝑗 at height ℎ on time 𝑡, for proposed block 𝑏. ACTION VARIABLE MUST BE
SET ONLY ONCE FOR EVERY REPLICA, HEIGHT AND BLOCK.

𝑠𝑒𝑛𝑡𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡
𝑖,ℎ,𝑏,𝑣 binary variable that indicates if replica 𝑖 ∈ 𝑅 has sent (in past) to all replicas a

Prepare Request message at height ℎ and view 𝑣, on time 𝑡, for proposed block 𝑏. Once set
to ONE this is carried forever as ONE.

𝑠𝑒𝑛𝑡𝑃𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡
𝑖,ℎ,𝑏,𝑣 binary variable that indicates if replica 𝑖 ∈ 𝑅 has sent (in past) to all replicas

a Prepare Response message at height ℎ and view 𝑣, on time 𝑡, for proposed block 𝑏. Once
set to ONE this is carried forever as ONE.

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 21

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡
𝑖,𝑗,ℎ,𝑏,𝑣 binary variable that indicates if replica 𝑖 ∈ 𝑅 has received (in past) from

replica 𝑗 a Prepare Request message at height ℎ and view 𝑣, on time 𝑡, for proposed block 𝑏.
Once set to ONE this is carried forever as ONE.

𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡
𝑖,𝑗,ℎ,𝑏,𝑣 binary variable that indicates if replica 𝑖 ∈ 𝑅 has received (in past) from

replica 𝑗 a Prepare Response message at height ℎ and view 𝑣, on time 𝑡, for proposed block
𝑏. Once set to ONE this is carried forever as ONE.

𝑠𝑒𝑛𝑡𝐵𝑙𝑘𝑃 𝑒𝑟𝑠𝑖𝑠𝑡𝑡
𝑖,ℎ,𝑏 binary variable that indicates if replica 𝑖 ∈ 𝑅 has sent (in past) to all replicas

a Block Relay message at height ℎ, on time 𝑡, for proposed block 𝑏. Once set to ONE this is
carried forever as ONE. % Nao se assumi que um byzantine poderia dar dois relays diferentes
em views distintos?

𝑟𝑒𝑐𝑣𝑑𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡
𝑖,𝑗,ℎ,𝑏 binary variable that indicates if replica 𝑖 ∈ 𝑅 has received (in past) from

replica 𝑗 a Block Relay message at height ℎ, on time 𝑡, for proposed block 𝑏. Once set to
ONE this is carried forever as ONE.

𝑏𝑙𝑜𝑐𝑘𝑅𝑒𝑙𝑎𝑦𝑒𝑑𝑏 binary variable that indicates if block 𝑏 was relayed (on any time, height or view).

Objective function:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑
𝑏∈𝐵

𝑏𝑙𝑜𝑐𝑘𝑅𝑒𝑙𝑎𝑦𝑒𝑑𝑏 (2)

The adversary can control 𝑓 replicas, but the other 𝑀 replicas must follow dBFT algorithm. The
adversary can choose any delay for any message (up to maximum simulation time |𝑇 |). If it wants to
shutdown the whole network, no blocks will be ever produced and objective will be zero (minimum
possible). So, adversary will try to maximize blocks produced by manipulating delays in a clever way.
As described by Equation (2), objective function is bounded to [0, |𝐵|].

Constraints:

Initialization constraints

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑡0
𝑖,ℎ0,𝑣0

= 1 ∀𝑖 ∈ 𝑅𝑂𝐾 (3)

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑡0
𝑖,ℎ,𝑣 = 0 ∀𝑖 ∈ 𝑅𝑂𝐾, ℎ ∈ 𝐻\{ℎ0}, 𝑣 ∈ 𝑉 \{𝑣0} (4)

∑
𝑣∈𝑉

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑡
𝑖,ℎ,𝑣 = 1 ∀𝑖 ∈ 𝑅, 𝑡 ∈ 𝑇 \{𝑡0}, ℎ ∈ 𝐻 (5)

∑
ℎ∈𝐻

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑡
𝑖,ℎ,𝑣 = 1 ∀𝑖 ∈ 𝑅, 𝑡 ∈ 𝑇 \{𝑡0}, 𝑣 ∈ 𝑉 (6)

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 22

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

Time zero constraints:

𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡0
𝑖,ℎ,𝑏,𝑣 = 0 ∀𝑖 ∈ 𝑅, ∀ℎ, 𝑏, 𝑣 (7)

𝑠𝑒𝑛𝑡𝑃𝑟𝑅𝑒𝑞𝑡0
𝑖,ℎ,𝑏,𝑣 = 0 ∀ℎ, 𝑏, 𝑖, 𝑣 (8)

𝑅𝑒𝑐𝑣𝑃 𝑟𝑒𝑝𝑅𝑒𝑞𝑡0
𝑖,𝑗,ℎ,𝑏,𝑣 = 0 ∀𝑖, 𝑗 ∈ 𝑅, ∀ℎ, 𝑏, 𝑣 (9)

𝑟𝑒𝑐𝑣𝑑𝑃 𝑟𝑅𝑒𝑞𝑡0
𝑖,𝑗,ℎ,𝑏,𝑣 = 0 ∀𝑗, ℎ, 𝑏, 𝑖, 𝑣 (10)

𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡0
𝑖,ℎ,𝑏,𝑣 = 0 ∀𝑖 ∈ 𝑅, ∀ℎ, 𝑏, 𝑣 (11)

𝑠𝑒𝑛𝑡𝑃𝑟𝑅𝑒𝑠𝑝𝑡0
𝑖,ℎ,𝑏,𝑣 = 0 ∀ℎ, 𝑏, 𝑖, 𝑣 (12)

𝑅𝑒𝑐𝑣𝑃𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡0
𝑖,𝑗,ℎ,𝑏,𝑣 = 0 ∀𝑖, 𝑗 ∈ 𝑅, ∀ℎ, 𝑏, 𝑣 (13)

𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑅𝑒𝑠𝑝𝑡0
𝑖,𝑗,ℎ,𝑏,𝑣 = 0 ∀𝑗, ℎ, 𝑏, 𝑖, 𝑣 (14)

𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑙𝑎𝑦𝑡0
𝑖,ℎ,𝑏 = 0 ∀𝑖 ∈ 𝑅, ∀ℎ, 𝑏 (15)

𝑠𝑒𝑛𝑡𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡0
𝑖,ℎ,𝑏 = 0 ∀𝑖 ∈ 𝑅, ∀ℎ, 𝑏 (16)

𝑅𝑒𝑐𝑣𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡0
𝑖,𝑗,ℎ,𝑏 = 0 ∀𝑖, 𝑗 ∈ 𝑅, ∀ℎ, 𝑏 (17)

𝑟𝑒𝑐𝑣𝑑𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡0
𝑖,𝑗,ℎ,𝑏 = 0 ∀𝑖, 𝑗 ∈ 𝑅, ∀ℎ, 𝑏 (18)

(19)

Prepare request constraints:

𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡
𝑖,ℎ,𝑏,𝑣 ≤ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑡

𝑖,ℎ,𝑣 ∀𝑖, ℎ, 𝑏, 𝑣, 𝑡 (20)
𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡

𝑖,ℎ,𝑏,𝑣 ≤ 𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑖,ℎ,𝑣 ∀𝑖, ℎ, 𝑏, 𝑣, 𝑡 (21)
𝑠𝑒𝑛𝑡𝑃𝑟𝑅𝑒𝑞𝑡

𝑖,ℎ,𝑏,𝑣 = 𝑠𝑒𝑛𝑡𝑃𝑟𝑅𝑒𝑞𝑡−1
𝑖,ℎ,𝑏,𝑣 + 𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡−1

𝑖,ℎ,𝑏,𝑣 ∀ℎ, 𝑏, 𝑖, 𝑣, 𝑡 ∈ 𝑇 \{𝑡0} (22)
𝑅𝑒𝑐𝑣𝑃𝑟𝑅𝑒𝑞𝑡

𝑖,𝑗,ℎ,𝑏,𝑣 ≤ 𝑠𝑒𝑛𝑡𝑃𝑟𝑅𝑒𝑞𝑡
𝑗,ℎ,𝑏,𝑣 ∀ℎ, 𝑏, 𝑖 ≠ 𝑗, 𝑣, 𝑡 (23)

𝑅𝑒𝑐𝑣𝑃𝑟𝑅𝑒𝑞𝑡
𝑖,𝑖,ℎ,𝑏,𝑣 = 𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡

𝑖,ℎ,𝑏,𝑣 ∀ℎ, 𝑏, 𝑖, 𝑣, 𝑡 (24)
𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑅𝑒𝑞𝑡

𝑖,𝑗,ℎ,𝑏,𝑣 = 𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑅𝑒𝑞𝑡−1
𝑖,𝑗,ℎ,𝑏,𝑣 + 𝑅𝑒𝑐𝑣𝑃𝑟𝑅𝑒𝑞𝑡−1

𝑖,𝑗,ℎ,𝑏,𝑣 ∀ℎ, 𝑏, 𝑖, 𝑗, 𝑣, 𝑡 ∈ 𝑇 \{𝑡0}
(25)

Prepare response constraints:

𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡
𝑖,ℎ,𝑏,𝑣 ≤ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑡

𝑖,ℎ,𝑣 ∀𝑖, ℎ, 𝑏, 𝑣, 𝑡 (26)

𝑆𝑒𝑛𝑑𝑃 𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡
𝑖,ℎ,𝑏,𝑣 ≥ 1

𝑁 ∑
𝑗∈𝑅

𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑅𝑒𝑞𝑡−1
𝑖,𝑗,ℎ,𝑏,𝑣 ∀𝑖 ∈ 𝑅𝑂𝐾, ℎ, 𝑏, 𝑣, 𝑡 (27)

𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡
𝑖,ℎ,𝑏,𝑣 ≤ ∑

𝑗∈𝑅
𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑅𝑒𝑞𝑡−1

𝑖,𝑗,ℎ,𝑏,𝑣 ∀𝑖 ∈ 𝑅, ℎ, 𝑏, 𝑣, 𝑡 (28)

𝑠𝑒𝑛𝑡𝑃𝑟𝑅𝑒𝑠𝑝𝑡
𝑖,ℎ,𝑏,𝑣 = 𝑠𝑒𝑛𝑡𝑃𝑟𝑅𝑒𝑠𝑝𝑡−1

𝑖,ℎ,𝑏,𝑣 + 𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡−1
𝑖,ℎ,𝑏,𝑣 ∀ℎ, 𝑏, 𝑖, 𝑣, 𝑡 ∈ 𝑇 \{𝑡0}

(29)

𝑅𝑒𝑐𝑣𝑃𝑟𝑅𝑒𝑠𝑝𝑡
𝑖,𝑗,ℎ,𝑏,𝑣 ≤ 𝑠𝑒𝑛𝑡𝑃𝑟𝑅𝑒𝑠𝑝𝑡

𝑗,ℎ,𝑏,𝑣 ∀ℎ, 𝑏, 𝑖 ≠ 𝑗, 𝑣, 𝑡 (30)
𝑅𝑒𝑐𝑣𝑃𝑟𝑅𝑒𝑠𝑝𝑡

𝑖,𝑖,ℎ,𝑏,𝑣 = 𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡
𝑖,ℎ,𝑏,𝑣 ∀ℎ, 𝑏, 𝑖, 𝑣, 𝑡 (31)

𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑅𝑒𝑠𝑝𝑡
𝑖,𝑗,ℎ,𝑏,𝑣 = 𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑅𝑒𝑠𝑝𝑡−1

𝑖,𝑗,ℎ,𝑏,𝑣 + 𝑅𝑒𝑐𝑣𝑃𝑟𝑅𝑒𝑠𝑝𝑡−1
𝑖,𝑗,ℎ,𝑏,𝑣 ∀ℎ, 𝑏, 𝑖, 𝑗, 𝑣, 𝑡 ∈ 𝑇 \{𝑡0}

(32)

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 23

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

Block persist constraints:

𝑠𝑒𝑛𝑡𝐵𝑙𝑘𝑃 𝑒𝑟𝑠𝑖𝑠𝑡𝑡
𝑖,ℎ,𝑏 = 𝑠𝑒𝑛𝑡𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡−1

𝑖,ℎ,𝑏 + 𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑙𝑎𝑦𝑡−1
𝑖,ℎ,𝑏 ∀𝑖 ∈ 𝑅, ℎ, 𝑏, 𝑡

(33)

𝑅𝑒𝑐𝑣𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡
𝑖,𝑗,ℎ,𝑏 ≤ 𝑠𝑒𝑛𝑡𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡

𝑗,ℎ,𝑏 ∀ℎ, 𝑏, 𝑖 ≠ 𝑗, 𝑣, 𝑡
(34)

𝑅𝑒𝑐𝑣𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡
𝑖,𝑖,ℎ,𝑏 = 𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑙𝑎𝑦𝑡

𝑖,ℎ,𝑏 ∀ℎ, 𝑏, 𝑖, 𝑡 (35)
𝑟𝑒𝑐𝑣𝑑𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡

𝑖,𝑗,ℎ,𝑏 = 𝑟𝑒𝑐𝑣𝑑𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡−1
𝑖,𝑗,ℎ,𝑏 + 𝑅𝑒𝑐𝑣𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡−1

𝑖,𝑗,ℎ,𝑏 ∀ℎ, 𝑏, 𝑖, 𝑗, 𝑡 ∈ 𝑇 \{𝑡0}
(36)

Block relay constraints:

∑
𝑡∈𝑇

𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑙𝑎𝑦𝑡
𝑖,ℎ,𝑏 ≤ 1 ∀𝑖 ∈ 𝑅, ∀ℎ, 𝑏

(37)

𝑏𝑙𝑜𝑐𝑘𝑅𝑒𝑙𝑎𝑦𝑒𝑑𝑏 ≥ 1
𝑁|𝐻| ∑

𝑡∈𝑇
∑
𝑖∈𝑅

∑
ℎ∈𝐻

𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑙𝑎𝑦𝑡
𝑖,ℎ,𝑏 ∀𝑏 ∈ 𝐵 (38)

𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑙𝑎𝑦𝑡
𝑖,ℎ,𝑏 ≤ 1

𝑀 ∑
𝑗∈𝑅

𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑅𝑒𝑠𝑝𝑡−1
𝑖,𝑗,ℎ,𝑏,𝑣 + ∑

𝑗∈𝑅
𝑟𝑒𝑐𝑣𝑑𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡

𝑖,𝑗,ℎ,𝑏 ∀𝑖 ∈ 𝑅, ℎ, 𝑏, 𝑣, 𝑡

(39)

8.10.2 Example

Fixed values presented in bold.

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑡
𝑖,ℎ,𝑣, for 𝑖 ∈ 𝑅𝑂𝐾, ℎ = 0, 𝑣 = 0:

i=0 1 1 1 1 1 ...
t 0 1 2 3 4 ...

𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑖,ℎ,𝑣, ℎ = 0:
i=0 1 0 0 ...
i=1 0 1 0 ...
i=2 0 0 1 ...
v 0 1 2 ...

𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑖,ℎ,𝑣, ℎ = 1:
i=0 0 1 0 ...
i=1 0 0 1 ...
i=2 0 0 0 ...
v 0 1 2 ...

𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡
𝑖,ℎ,𝑏,𝑣, for 𝑖 = 0, ℎ = 0, 𝑏 = 0, 𝑣 = 0:

SendPrepReq(i=0) 0 0 1 0 0 0 0 0 ...
t 0 1 2 3 4 5 6 7 ...

𝑠𝑒𝑛𝑡𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡
𝑖,ℎ,𝑏,𝑣, i=0, ℎ, 𝑏, 𝑣 = 0:

(i=0) 0 0 0 1 1 1 1 1 ...
t 0 1 2 3 4 5 6 7 ...

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 24

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡
𝑖,𝑗,ℎ,𝑏,𝑣, for i=0,j=0, ℎ, 𝑏, 𝑣 = 0:

- 0 0 0 1 1 1 1 1 ...
t 0 1 2 3 4 5 6 7 ...

𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡
𝑖,𝑗,ℎ,𝑏,𝑣, i=0,j=1, ℎ, 𝑏, 𝑣 = 0:

- 0 0 0 1 1 1 1 1 ...
t 0 1 2 3 4 5 6 7 ...

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 25

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

9 Towards the Smart Economy: the three pillars of NEO

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 26

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

10 Using NEO for IoT devices

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 27

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

11 Advanced Smart Contracts: Random Numbers, Triggers and
Smart Transactions

11.1 Advanced Accounts: special locks, funds release cases, Over-The-Counter
and special cryptographic accounts

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 28

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

12 References

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 29

Community Yellow Paper: A Technical Specification for NEO Blockchain March 13, 2019

Alur, Rajeev, and David Dill. 1994. “A Theory of Timed Automata.” Theoretical Computer Science
126: 183–235. https://www.cis.upenn.edu/~alur/TCS94.pdf.

Bracha, Gabriel, and Sam Toueg. 1985. “Asynchronous Consensus and Broadcast Protocols.” J.
ACM 32 (4): 824–40. https://doi.org/10.1145/4221.214134.

Castro, Miguel, and Barbara Liskov. 1999. “Practical Byzantine Fault Tolerance.” In OSDI, 99:173–
86.

Duan, Sisi, Michael K. Reiter, and Haibin Zhang. 2018. “BEAT: Asynchronous Bft Made Practical.”
In Proceedings of the 2018 Acm Sigsac Conference on Computer and Communications Security,
2028–41. CCS ’18. New York, NY, USA: ACM. https://doi.org/10.1145/3243734.3243812.

Hao, X., L. Yu, L. Zhiqiang, L. Zhen, and G. Dawu. 2018. “Dynamic Practical Byzantine Fault
Tolerance.” In 2018 Ieee Conference on Communications and Network Security (Cns), 1–8. https:
//doi.org/10.1109/CNS.2018.8433150.

Hongfei, Da and Zhang, Erik. 2015. “NEO: A Distributed Network for the Smart Economy.”
https://github.com/neo-project/docs/blob/master/en-us/whitepaper.md.

Lamport, Leslie, Robert Shostak, and Marshall Pease. 1982. “The Byzantine Generals Problem.”
ACM Transactions on Programming Languages and Systems (TOPLAS) 4 (3): 382–401.

Miller, Andrew, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. “The Honey Badger of Bft
Protocols.” In Proceedings of the 2016 Acm Sigsac Conference on Computer and Communications
Security, 31–42. ACM.

Regev, Oded. 2009. “On Lattices, Learning with Errors, Random Linear Codes, and Cryptography.”
Journal of the ACM (JACM) 56 (6): 34.

Schneider, Fred B. 1990. “Implementing Fault-Tolerant Services Using the State Machine Approach:
A Tutorial.” ACM Comput. Surv. 22 (4): 299–319. https://doi.org/10.1145/98163.98167.

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 30

https://www.cis.upenn.edu/~alur/TCS94.pdf
https://doi.org/10.1145/4221.214134
https://doi.org/10.1145/3243734.3243812
https://doi.org/10.1109/CNS.2018.8433150
https://doi.org/10.1109/CNS.2018.8433150
https://github.com/neo-project/docs/blob/master/en-us/whitepaper.md
https://doi.org/10.1145/98163.98167

	Introduction
	Blockchain Networks: consensus protocols, wallets, digital assets and smart contracts
	Numbers on Neo
	Cryptography basics: Digital Signatures and Hash Functions
	Current cryptography and NeoQS

	Neo Assets: Global UTXO vs Account Models vs Tokens
	Interacting with NEO network: transactions, RPC and P2P protocols
	Building Distributed Applications with NeoVM and NeoContract
	Delegated Byzantine Fault Tolerance: Technical details, challenges and perspectives
	Background on Practical BFT
	NEO dBFT core modifications
	dBFT detailed description
	dBFT states

	Flowchart
	Pseudocode
	Block finality
	Multiple block signature exposure
	Detected fault on dBFT v1.0
	Commit phase with change view blocking

	Regeneration
	Possible faults
	Pure network faults
	Mixed malicious byzantine faults

	A MILP Model for Failures and Attacks on a BFT Blockchain Protocol
	Mathematical model
	Example

	Towards the Smart Economy: the three pillars of NEO
	Using NEO for IoT devices
	Advanced Smart Contracts: Random Numbers, Triggers and Smart Transactions
	Advanced Accounts: special locks, funds release cases, Over-The-Counter and special cryptographic accounts

	References

